Evolving Bunch and Retardation in the Impedance Formalism

R. Warnock – SLAC

Collaboration with M. Venturini, R. Ruth

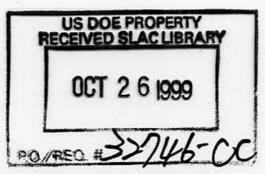
Workshop on Coherent Radiation in Storage Rings, Napa, California, October 28-29, 2002

- Motivation for impedance rather than wake potential (or its integral) to compute the collective force of CSR.
- Complete impedance $Z(n, \omega)$ versus its "diagonal part" $Z(n) = Z(n, n\omega_0)$. Required, in principle, when the bunch profile evolves in time.
- General form of CSR force and radiated power. Causality and retardation.
- Practical computation of force and power in a Vlasov or macroparticle simulation.

Impedances and Wakes in High-Energy Particle Accelerators

Bruno W Zotter
CERN, Geneva. Switzerland

Semyon A Kheifets SLAC, Stanford, USA



• Practical computation of force and power (cont'd):

Reduction of $\sum_{n}(\cdots) \int d\omega(\cdots)$ can be done in terms of $Z(n, n\omega_0)$ and $\partial Z/\partial\omega(n, n\omega_0)$, to a good approximation, except for ω near waveguide cutoffs

$$\omega_p = \pm \frac{\pi pc}{h}$$
, $p = 1, 3, \cdots$,

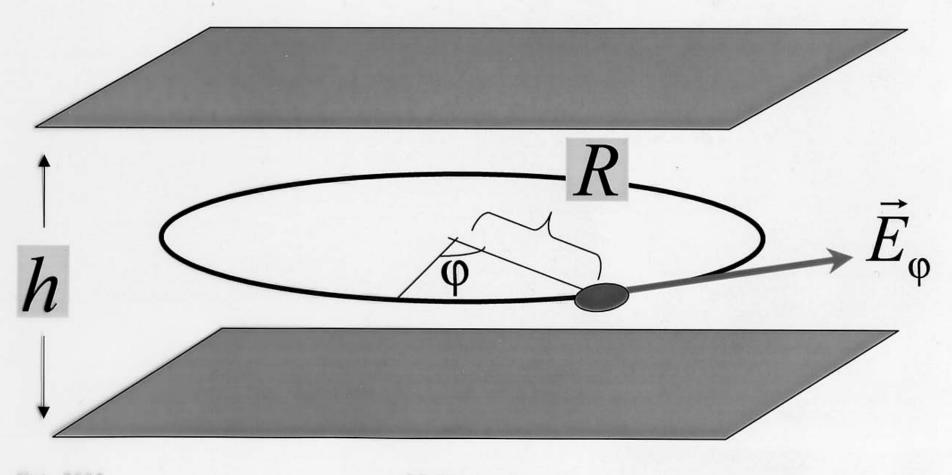
where $Z(n,\omega)$ has a pole in ω . Pole is associated with prominent retardation effects.

Shielding Model

For dynamical studies it is essential to including shielding of CSR due to the vacuum chamber. For this talk, assume parallel-plate model, plate separation h, source on circular orbit of fixed radius R in mid-plane. Cylindrical coordinates (r, θ, y) , with y perpendicular to plates.

Our story can be adapted to other models with analytic solutions, but maybe not to models solved numerically (Stupakov & Kotelnikov).

Parallel Plate Model for CSR: Geometry Outline



Oct. 2002

M. Venturini

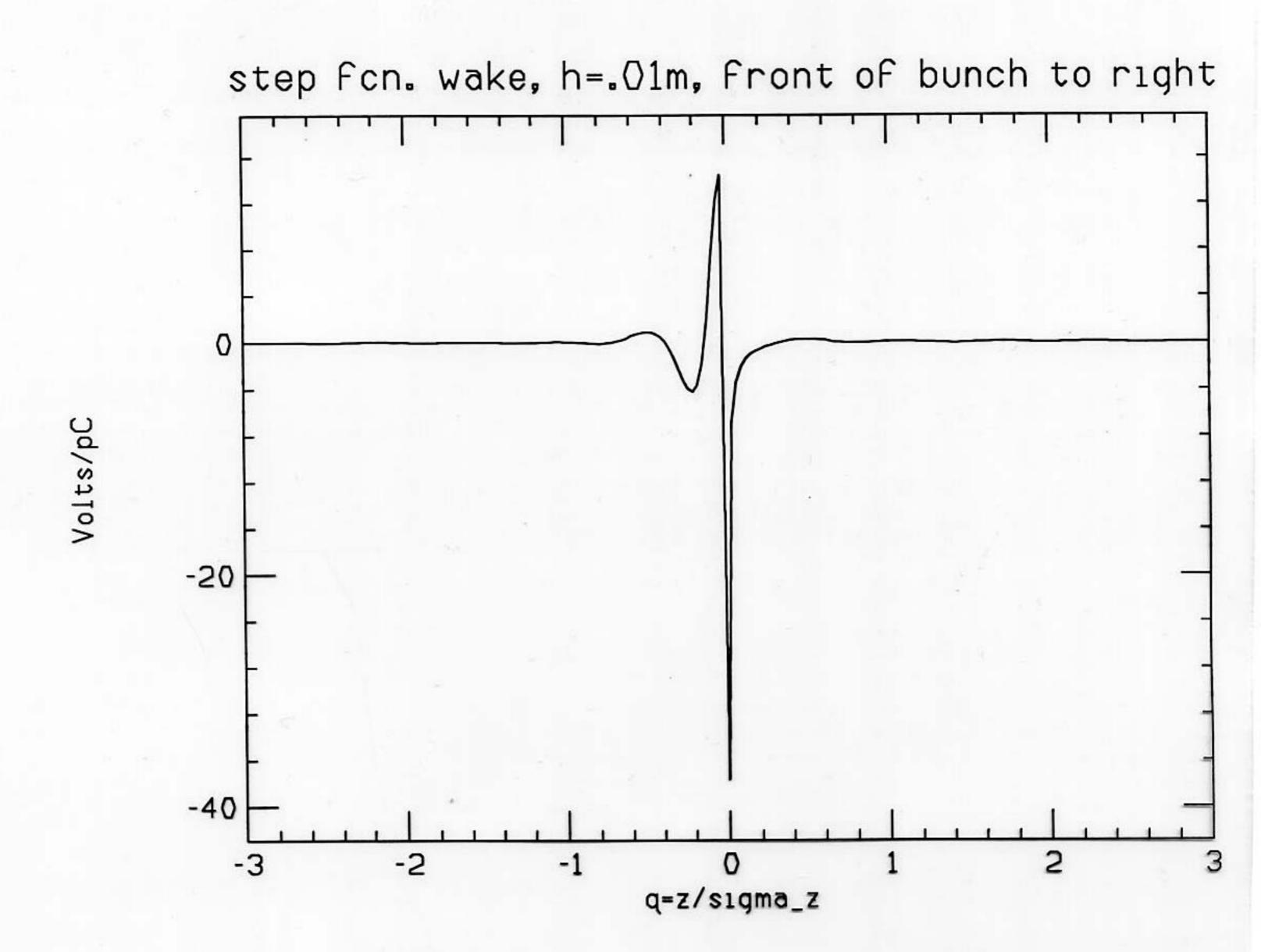
Impedance vs. Wake Potential

Conventionally, the wake voltage can be represented by either the impedance Z(n), or the wake potential W(z), or the integral S(z) of W:

$$V(z) = Q\omega_0 \sum_n e^{inz/R} Z(n) \lambda_n =$$

$$Q \int W(z - z') \lambda(z') dz' = -Q \int S(z - z') \lambda'(z') dz'$$

For our radiation impedance, even S(z) is too concentrated at small z to be useful in a Vlasov simulation. We can use Z(n) successfully, with the sum on n converging quickly by virtue of the fall-off of λ_n .



Laplace Transform of Current

Longitudinal current has the form

$$I(\theta, t) = Q\omega_0\lambda(\theta - \omega_0 t, t) , \quad \lambda(\theta, t) = 0 , t \le 0 ,$$

which has a Fourier transform with $\text{Im}\omega > 0$ (equivalent to Laplace transform)

$$\hat{I}(n,\omega) = \frac{1}{(2\pi)^2} \int_0^{2\pi} e^{-in\theta} d\theta \int_{-\infty}^{\infty} e^{i\omega t} I(\theta, t)$$
$$= \frac{Q\omega_0}{2\pi} \int_0^{\infty} e^{i(\omega - n\omega_0)t} \lambda_n(t) dt , \quad \text{Im}\omega = v > 0.$$

Assume that $\lambda_n \in C^p$, $p \ge 2$ with

$$\lambda_n^{(k)}(0) = 0 , k = 0, 1, \dots, p - 1.$$

Wake Voltage in Terms of Complete Impedance

Taking similar Laplace transform of Maxwell's equations and solving for the longitudinal electric field $\hat{\mathcal{E}}(n,\omega)$, we define $Z(n,\omega)$ by

$$-2\pi R\hat{\mathcal{E}}(n,\omega) = Z(n,\omega)\hat{I}(n,\omega) = \hat{V}(n,\omega) .$$

Hence the general form of the wake voltage is

$$V(\theta, t) =$$

$$Q\omega_0 \sum_{n} e^{in\theta} \int_{\text{Im}\omega=v} d\omega e^{-i\omega t} Z(n, \omega)$$

$$\cdot \frac{1}{2\pi} \int_0^\infty e^{i(\omega - n\omega_0)t'} \lambda_n(t') dt'.$$

Radiated Power in Terms of Complete Impedance

$$P(t) = (Q\omega_0)^2 \sum_n e^{in\theta} \lambda_n(t) \int_{\text{Im}\omega=v} d\omega e^{-i\omega t} Z(n,\omega) \cdot \frac{1}{2\pi} \int_0^\infty e^{i(\omega - n\omega_0)t'} \lambda_n(t') dt'.$$

Depends on both ReZ and ImZ.

Causality and Analyticity

Contribution of $\lambda_n(t)$ for t>0 should vanish by causality. Mathematically, this happens because $Z(n,\omega)$ is analytic in ω in the upper half-plane, and obeys $|Z(n,\omega)| \leq M$, Im $\omega \geq 0$. Integrating once by parts we can get the bound

$$\left| \int_{t+\delta t}^{\infty} e^{i(\omega - n\omega_0)t'} \lambda_n(t') dt' \right| \le \frac{M}{|\omega - n\omega_0|} e^{-\operatorname{Im}\omega(t+\delta t)} .$$

This shows that when the ω -contour is moved to a semi-circle at infinity in the upper half-plane, the contribution of $\int_{t+\delta t}^{\infty}$ vanishes for any $\delta t > 0$.

The Limit $\delta t \to 0$

For any $\delta t > 0$ we have

$$V(\theta, t) = \frac{Q\omega_0}{2\pi} \sum_{n} e^{in\theta} \int_{\text{Im}\omega = v} d\omega Z(n, \omega) \int_0^{t+\delta t} dt' e^{i(\omega - n\omega_0)t'} \lambda_n(t') .$$

Can we put $\delta t = 0$ in this equation? Strangely enough, the answer is NO! The ω -integral does not converge uniformly w.r.t. δt , so taking the limit $\delta t \to 0$ under the integral is not justified, and in fact gives the wrong answer.

Strategy for the Limit $\delta t \to 0$

Integrate twice by parts on t' to get inverse powers of $\omega - n\omega_0$. Then the ω -integral converges uniformly and we can take the limit under the integral. Then integrate by parts in opposite direction. The ω -integral becomes

$$-\int d\omega e^{-i\omega t} \frac{Z(n,\omega)}{2\pi(\omega-n\omega_0)^2} \int_0^t dt' e^{i(\omega-n\omega_0)t'} \lambda_n''(t')$$

$$= i \int d\omega e^{-i\omega t} \frac{Z(n,\omega)}{2\pi(\omega-n\omega_0)} \int_0^t dt' e^{i(\omega-n\omega_0)t'} \lambda_n'(t') .$$

One More Integration by Parts Raises Hell!

$$\int d\omega e^{-i\omega t} \frac{Z(n,\omega)}{2\pi} \int_0^t dt' e^{i(\omega - n\omega_0)t'} \lambda_n(t')$$
$$-\frac{1}{2\pi i} \lambda_n(t) \int d\omega \frac{Z(n,\omega)}{\omega - n\omega_0}.$$

The first term is what we would get by putting $\delta t = 0$ in the original integral. The second term does not exist unless defined as a symmetric limit (which is allowed):

$$\lim_{\Omega \to \infty} \int_{-\Omega + iv}^{\Omega + iv} \frac{d\omega Z(n, \omega)}{\omega - n\omega_0} .$$

We can base calculations on the forms with λ'_n or λ''_n .

$$V(\theta, t) = -Q\omega_0 \sum_n e^{in\theta} \int d\omega e^{-i\omega t} \frac{Z(n, \omega)}{2\pi(\omega - n\omega_0)^2}$$
$$\cdot \int_0^t dt' e^{i(\omega - n\omega_0)t'} \lambda_n''(t')$$

- The 2nd order pole concentrates the ω -integral near $n\omega_0$.
- If $\lambda_n''(t)$ can be regarded as constant over any time interval Δt (i.e., λ_n is locally quadratic) then the t'-integral is proportional to $\operatorname{sinc}((\omega n\omega_0)\Delta t/2)$, also concentrated near $n\omega_0$.

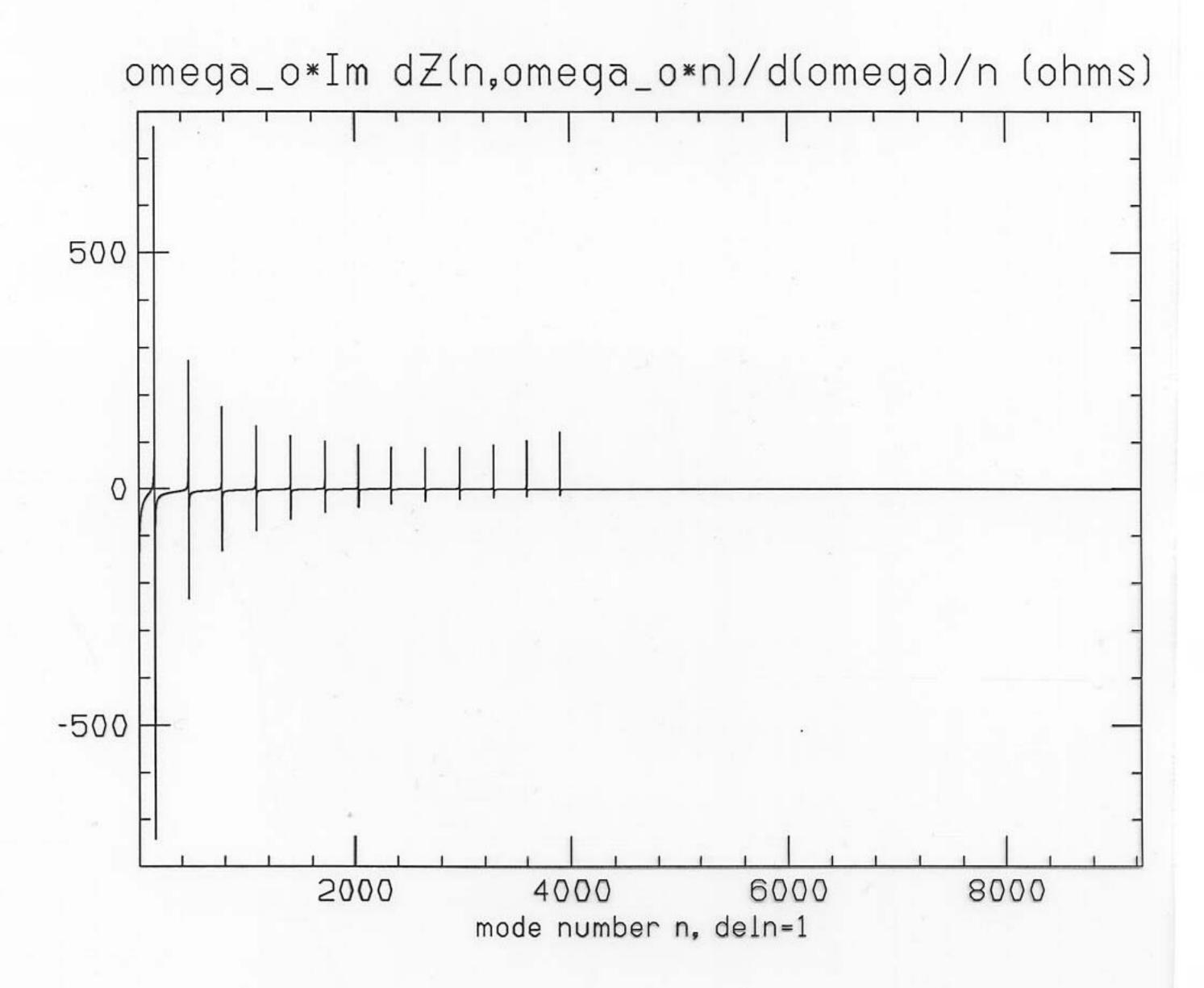
So let's expand $Z(n,\omega)$ about $n\omega_0!$

Taking two terms and applying residue theorem, we find

$$V(z,t) =$$

$$Q\omega_0 \sum_n e^{inz/R} \left(Z(n, n\omega_0) \lambda_n(t) + i \frac{\partial Z}{\partial \omega}(n, n\omega_0) \lambda'_n(t) \right) .$$

This does not work near waveguide cutoffs $\omega = \pm \pi p/h$, where $Z(n,\omega)$ has poles. Curiously, the residues of these poles vanish at $n\omega_0 = \pm \pi p/h$, so they do not show up in a plot of $Z(n,n\omega_0)$. They do show up in the derivative.



Evaluate the Pole Term and Expand the Remainder in a Taylor series

Let \tilde{Z} be the non-pole remainder. Then the result is

$$V(z,t) =$$

$$Q\omega_0 \sum_n e^{inz/R} \left[\tilde{Z}(n,n\omega_0) \lambda_n(t) + i \frac{\partial \tilde{Z}}{\partial \omega}(n,n\omega_0) \lambda'_n(t) + \cdots + \frac{Z_0 \pi R}{2\beta h} \sum_p \Lambda_p \int_{-t}^0 \lambda_n(t+u) du \left((n\omega_0 - \alpha_p c) e^{-i(n\omega_0 - \alpha_p c)} + (p \to -p) \right) \right], \quad \alpha_p = \pi p/h.$$

Retardation associated with waveguide cutoffs.

Conclusion

- To treat an evolving bunch in the impedance formalism, we have plausible corrections to the naive replacement $\lambda_n \to \lambda_n(t)$, which are not expensive to compute. We avoid an expensive computation of the double sum $\sum_n (\cdots) \int d\omega(\cdots)$.
- We have discovered an interesting retardation effect associated with waveguide cutoffs. One should try to understand this in physical terms.
- Numerical results coming soon!